
Visual Programming IS202

1
 م.م. أنس القصاب د. حيدر محمد المشهدي

Visual Programming IS202

Chapter Three

Variables, Constants, and Calculations

Coverage:

This chapter teaches you to write programs that involve the calculation of values for display to a form. In

order to calculate values, you will often need to compute intermediate values and this will involve the storage

of values to memory locations called variables. You will learn how to declare variables to store different types

of data, and to convert text data to numeric data, to format output, and use Try-Catch blocks to catch data

processing exceptions (also termed errors). You will also use message boxes to display messages to the

application user.

INTRODUCTION

Chapter 3

In this chapter you build a project that computes information about textbook sales for the VB University. The

project form is shown below and uses some of the controls that you learned in your earlier study of VB.

This project is programmed by using the Input-Process-Output model for programming.

Input – Application users enter values into TextBoxes (and other controls such as check boxes if such controls

are used on a form). These values are input to the program. The program must convert the values entered

into the textboxes and store the values to memory variables or locations in memory.

Visual Programming IS202

2
 م.م. أنس القصاب د. حيدر محمد المشهدي

 Process – The computer program includes code that processes the input values stored in memory and

produces output values, also stored in memory.

 Output – The output memory values computed are displayed to read-only textbox controls on the

form. Either textbox controls (with the ReadOnly property set to True) or label controls are used to display

output information – the key is you do not want the application user to be able to enter values into a control

used to display output – I prefer to use read-only textbox controls instead of labels.

Variables, Constants, and Data Storage

Variables

 Provide a means to store data values that are not stored in files.

 Support the computation of values through their use in formulas in assignment statements.

 Represent locations in a computer's memory.

 are assigned a unique name for reference when writing computer code

This figure illustrates the concept of a variable name associated with locations in random access memory.

 Values are stored to memory locations (represented by the rectangle).

 The stored values can vary over time.

 Each memory location is assigned a unique variable name that is used to reference the location when
you write a program.

 Later you will learn how to name variables and allocate memory locations to the storage of data.

Types of Data

VB provides numerous data types to allow programmers to optimize the use of computer memory. Each

data type is described in the table shown here. Note the:

 Data type name.

 Description of data stored.

 Memory storage requirement in bytes.

Visual Programming IS202

3
 م.م. أنس القصاب د. حيدر محمد المشهدي

Table 3.1

Data

Type

Description of data stored Memory storage

in bytes

Text Data Storage

String Alphanumeric data such as letters of the alphabet, digits that are not treated as

numbers, and other special characters.

Size varies

Char Stores single Unicode characters (supports any international language). 2

 Numeric Data Storage – Fixed Point

Decimal Decimal numeric values – often used to store dollars/cents. 16

Numeric Data Storage – Floating Point

Double Double-precision numeric values with 14 digits of accuracy. 8

Single Single-precision numeric values with 6 digits of accuracy. 4

Numeric Data Storage – Whole Numbers (no decimal point)

Short Whole numeric values in the range -32,768 to 32,767. 2

Integer Whole numeric values in the range -2,147,483,648 to +2,147,483,647. 4

Long Whole numeric values that are very, very large. 8

 Special Data Types

Boolean True or False. 2

Byte Stores binary data of values 0 to 255 – can be used to store ASCII character code

values.

1

Date Stores dates in the form 1/1/0001 to 12/31/9999. 8

Object Stores data of any type. 4

Most business applications primarily use String, Decimal, Single, and Integer data types.

Here are examples of data that may be stored to computer memory:

 Customer Name – String – Stores alphabetic characters.

 Social Security Number – String – Numbers that are not used in computations.

 Customer Number – String – Numbers that are not used in computations.

 Balance Due – Decimal – Used in calculations and often requires a decimal point to separate dollars
and cents.

 Quantity in Inventory – Integer or Short – Selection depends on how large the quantity in inventory
will be, but the quantity is usually a whole number.

 Sales Tax Rate – Single or Decimal – Used to store a percentage value; also used for scientific
calculations.

Visual Programming IS202

4
 م.م. أنس القصاب د. حيدر محمد المشهدي

Naming Rules for Variables and Constants

You as the programmer decide what to name variables and constants – there are technical rules you must

follow when creating variable and constant names.

 Names can include letters, digits, and the underscore, but must begin with a letter.

 Names cannot contain spaces or periods.

 Names cannot be VB reserved words such as LET, PRINT, DIM, or CONST.

 Names are not case sensitive. This means that TotalInteger, TOTALINTEGER, and totalinteger are
all equivalent names.

 For all intensive purposes, a Name can be as long as you want (the actual limit is 16,383 characters in
length).

Naming Conventions

Naming variables and constants follows the Camel Casing naming convention that you learned in your earlier

studies. Use the following guidelines:

1. Create meaningful names – do not name a variable or constant X or Y or XInteger. Instead use names

such as StudentNameString, CountStudentsInteger, and AmountDueDecimal.

2. Avoid using abbreviations unless the abbreviation is standard and well-accepted such as SSNString for

storing social security number values.

3. Begin each name with an uppercase letter and capitalize each successive word in the name.

4. Use mixed case (such as AmountDueDecimal) for variables – use Uppercase for constant names (such

as TAX_RATE_SINGLE).

 This table provides sample identifier names:

Table 3.2

Data Type Example Variable or Constant Name

Boolean CheckedBoolean

Date ShipDate

Decimal AmountDueDecimal

Double DistanceToMoonDouble

Integer CountInteger

Long WorldPopulationLong

Single TAX_RATE_SINGLE

Short ClassSizeShort

String StudentNameString

Visual Programming IS202

5
 م.م. أنس القصاب د. حيدر محمد المشهدي

 Declaring Variables

Declare local variables with the Dim statement and module-level variables with the Private statement.

 Dim statement – use this to declare variables and constants inside a procedure these are local
variables.

 The Dim statement needs to specify a variable/constant name and data type.
o Specifying an initial value for a variable is optional -- do so if necessary.

o If an initial value is not assigned, then a string stores the "empty string" and all numeric variable

types store the value zero.

o Examples:

Dim StudentNameString As String

Dim CountStudentsInteger As Integer

Dim AccountBalanceDecimal As Decimal = 100D

You can also declare more than one variable in a Dim statement.

Dim StudentNameString, MajorString As String

Dim SubtotalDecimal, TotalDecimal, TaxAmountDueDecimal As Decimal

This is an example of declaring two different module-level variables.

Private CountStudentsInteger As Integer

Private TotalDecimal As Decimal

Declaring Constants

 Declare constants with the Const statement.

 Constants are similar to variables – constants are values that are stored to memory locations;
however, a constant cannot have its value change during program execution – constant values are
generally fixed over time.

 Examples: sales tax rate or name of one of the states in the United States.

VB has two different types of constants.

1. Intrinsic Constants – these are defined as enumerations such as Color.Red and Color.Blue. These

are called intrinsic because they are predefined in VB and always exist for your use.

2. Named Constants – these are constants you define with a Const statement. These constants are

specific to your programming application.

Visual Programming IS202

6
 م.م. أنس القصاب د. حيدر محمد المشهدي

Examples:

Const SALES_TAX_RATE_SINGLE As Single = 0.0725F

Const BIG_STATE_NAME_STRING As String = "Alaska"

Const TITLE_STRING As String = "Data Entry Error"

Const MAX_SIZE_INTEGER As Integer = 4000

String (text or character) constants are assigned values within the " " (double quote) marks. This statement

stores double-quote marks as part of the string – do this by typing two double-quote marks together.

 Const COURSE_TITLE_STRING As String = ""Programming Visual Basic""

Numeric constants like those shown above do NOT use double-quote marks – just type the numeric value

numbers. Follow these rules for assigning numeric values to constants:

 You can use numbers, a decimal point, and a plus (+) or minus (-) sign.

 Do not include special characters such as a comma, dollar sign, or other special characters.

 Append one of these characters to the end of the numeric constant or variable to denote a data type
declaration. If you do not use these, a whole number is assumed to be Integer and a fractional value is
assumed to be Double.

Decimal D 40.45D

Double R 12576.877R

Integer I 47852I

Long L 9888444222L

Short S 2588S

Single F 0.0725F

Scope of Variables and Constants

Each variable (or constant) has a finite lifetime and visibility – termed the Scope. The variable lifetime is

how long the variable exists before the computer operating system garbage-collects the memory allocated

to the stored value.

There are four levels of scope.

 Namespace (use a Public Shared declaration instead of Dim) – the variable is visible within the entire
project (applicable to a project with multiple forms).

o The variable is project-wide and can be used in any procedure in any form in the project.

o The variable memory allocation is garbage-collected when application execution terminates.

 Module level (usually use Private to declare a variable; use Const to declare a constant) – a
variable/constant can be used in any procedure on a specific form – it is not visible to other Forms.

Visual Programming IS202

7
 م.م. أنس القصاب د. حيدر محمد المشهدي

o Use module-level variables when the values that are stored in their memory locations are

used in more than one procedure (click event or other type of procedure).

o A module-level variable or constant is created (allocated memory) when a form loads into

memory and the variable or constant remains in memory until the form is unloaded.

 Local (use Dim to declare a variable; use Const to declare a constant) – a variable/constant is declared
and used only within a single procedure.

o Variable lifetime is the period for which a variable exists.

o When a procedure executes, such as when you click on a button control, each variable and

constant declared as local within the procedure executes, "uncreated" when the procedure

executes the End Sub statement.

o Each time you click the button, a new set of variables and constants are created.

 Block (use Dim to declare the variable; use Const to declare the constant) – the variable/constant is
only visible within a small portion of a procedure – Block variables/constants are rarely created.

This figure illustrates where to declare local versus module-level variables/constants. In a later chapter you

will learn to declare namespace and block variables and constants and when to use the Public keyword in

place of Private.

Visual Programming IS202

8
 م.م. أنس القصاب د. حيدر محمد المشهدي

Key Points about Errors

 If you name a module-level and local variable the same name, VB will create two different
variables! The local variable will exist within the procedure where it is named, but the module-level
variable will exist elsewhere in the code for the form. This also applies to constants. AVOID THIS
ERROR.

 When you first declare a local variable, VB will underline the variable and tell you it is "an unused local
variable" – this is not really an error because the exception message will go away automatically when
you use the variable name in an assignment statement.

CALCULATIONS

Calculations are performed with variables, constants, and object properties such as the Text property of a

TextBox.

 Converting Input Data Types

As part of the Input phase of the Input-Process-Output model, you must convert values from

the Text property of a TextBox and store the converted values to memory variables.

 Text property – always stores string values, even if the string looks like a number.

 Parse method – converts a value from a Text property to an equivalent numeric value for storage to a
numeric variable. Parse means to examine a string character by character and convert the value to
another format such as decimal or integer.

 In order to parse a string that contains special characters such as a decimal point, comma, or currency
symbol, use the Globalization enumeration shown in the coding examples below.

o If you don’t specify the Globalization value of Globalization.NumberStyles.Currency, then a
value entered into a textbox control such as $1,515.95 will NOT parse to Decimal.

o The Globalization value Globalization.NumberStyles.Number will allow
the Integer.Parse method to parse a textbox value that contains a comma, such as 1,249.

o VB's Intellisense will display the various possible values for the Globalization enumeration.

Example #1 – this example shows you how to declare numeric variables then store values to them from

Textbox controls.

 'Declare variables

Dim PriceDecimal As Decimal

Dim QuantityInteger As Integer

'Convert values from textbox controls to memory

PriceDecimal

= Decimal.Parse(PriceTextBox.Text, Globalization.NumberStyles.Curre

ncy)

QuantityInteger

= Integer.Parse(QuantityTextBox.Text, Globalization.NumberStyles.Nu

mber)

Visual Programming IS202

9
 م.م. أنس القصاب د. حيدر محمد المشهدي

Example #2 – this example shows you how to declare numeric variables and store values to them from

Textbox controls using a single assignment statement in one step.

'Declare variables and convert values from textbox

'controls to memory in a single statement

Dim PriceDecimal As Decimal = Decimal.Parse(PriceTextBox.Text,

 Globalization.NumberStyles.Currency)

Dim QuantityInteger As

Integer = Integer.Parse(QuantityTextBox.Text,

 Globalization.NumberStyles.Number)

Older versions of VB used named functions to convert values. Examples are the CDec (convert to Decimal)

and CInt (convert to Integer) functions shown here – you may encounter these functions in other VB books

that you read or in the VB Help files.

There are some advantages to these named functions:

 A TextBox Text property value of $100.00 will NOT generate an error if you use the CDec function to
convert the value as shown below—the data will convert satisfactorily.

 The functions are faster and easier to type.

'Converts to decimal and Integer

PriceDecimal = CDec(PriceTextBox.Text)

QuantityInteger = CInt(QuantityTextBox.Text)

Converting Variable Values to Output Data Types

In order to display numeric variable values as output the values must be converted from numeric data types

to string in order to store the data to the Text property of a TextBox control. Use the ToString method. These

examples show converting strings to a numeric representation with 2 digits to the right of the decimal (N2)

and currency with 2 digits to the right of the decimal (C2) as well as no digits to the right of a number (N0 –

that is N zero, not N Oh).

SubtotalTextBox.Text = SubtotalDecimal.ToString("N2")

SalesTaxTextBox.Text = SalesTaxDecimal.ToString("C2")

QuantityTextBox.Text = QuantityInteger.ToString("N0")

Implicit Conversion – this is conversion by VB from a narrower to wider data type (less memory to

more memory) – this is done automatically as there is no danger of losing any precision. In this

example, an integer (4 bytes) is converted to a double (8 bytes):

 BiggerNumberDouble = SmallerNumberInteger

Visual Programming IS202

10
 م.م. أنس القصاب د. حيدر محمد المشهدي

Explicit Conversion – this is also called Casting and is used to convert between numeric data types

that do not support implicit conversion. This table shows use of the Convert method to convert one

numeric data type to another numeric data type. Note that fractional values are rounded when

converting to integer.

 Table 3.3

Decimal NumberDecimal = Convert.ToDecimal(ValueSingle)

Single NumberSingle = Convert.ToSingle(ValueDecimal)

Double NumberDouble = Convert.ToDouble(ValueDecimal)

Short NumberShort = Convert.ToInt16(ValueSingle)

Integer NumberInteger = Convert.ToInt32(ValueSingle)

Long NumberLong = Convert.ToInt64(ValueDouble)

 Performing Calculations – VB uses a wider data type when calculations include unlike data types. This

example produces a decimal result.

 AverageSaleDecimal = TotalSalesDecimal / CountInteger

 Summary Rules:

 Use the Parse method to convert a string to a number or to parse the value in a textbox control.

 Use the Convert method to convert a type of number to a different type of number.

Arithmetic Operators

The arithmetic operators are the same as in many other programming languages. They are:

+ Addition

- Subtraction

* Multiplication

/ Division

^ Exponentiation

\ Integer Division

Mod Modulus Division

Exponentiation – This raises a number to the specified power – the result produced is data

type Double. Example:

 ValueSquaredDouble = NumberDecimal ^ 2

Visual Programming IS202

11
 م.م. أنس القصاب د. حيدر محمد المشهدي

ValueCubedDouble = NumberDecimal ^ 3

Integer Division – Divide one integer by another leaving an integer result and discarding the remainder,

if any. Example:

 If the variable MinutesInteger = 130, then this expression returns the value of 2 hours.

 HoursInteger = MinutesInteger \ 60

 Modulus Division – This returns the remainder of a division operation. Using the same value

for MinutesInteger = 500, this expression returns the value 20 minutes and can be used to calculate

the amount of overtime worked for an 8-hour work day.

 MinutesInteger = MinutesInteger Mod 60

Order of Precedence

The order of precedence for expressions that have more than one operation is the same as for other

programming languages.

 Evaluate values and calculation symbols in this order:

(1) Values enclosed inside parentheses

(2) Exponentiation

(3) Multiplication and Division

(4) Integer Division

(5) Modulus Division

(6) Addition and Subtraction

The order of precedence is applied to an expression by evaluating the expression from left to right for values

within parentheses – within parentheses VB will process the expression from left to right looking for an

applying the exponentiation operator, then again from left to right applying the multiplication and division

operators, etc. This left to right application of operators continues in pass-after-pass working down the order

of precedence.

Use parentheses to control the application of the order of precedence of operations.

 Example #1: (5 + 6) * 2 is evaluated:

o first as 5 + 6 = 11, because the parentheses force the addition operation to be evaluated

before the multiplication operation,

o next VB will multiple 11 by 2 to arrive at 22.

 Example #2: 5 + 6 * 2 is evaluated:

o first as 6 * 2 = 12, because the multiplication operator is higher in the order of precedence,

o next VB will add 5 to 12 to arrive at 17.

Visual Programming IS202

12
 م.م. أنس القصاب د. حيدر محمد المشهدي

Work the problems in the following table and record the results. Assume that: X=2, Y=4, and Z=3.

Table 3.4

Problem Result

X + Y ^ Z 66

16 / Y / X 2

X * (X + 1) 6

X * X + 1 5

Y ^ X + Z * 2 22

Y ^ (X + Z) * 2 2048

(Y ^ X) + Z * 2 22

((Y ^ X) + Z) * 2 38

This table shows example mathematical notation and the equivalent VB expression.

Table 3.5

Mathematical Notation VB Expression

2X 2 * X

3(X + Y) 3 * (X + Y)

(X + Y)(X – Y) (X + Y) * (X – Y)

π r2 3.14 * r ^ 2

Assignment Operators and Formulas

The equal sign is the assignment operator. It means store the value of the expression on the right side of the

equal sign to the memory variable named on the left side of the equal sign. Examples:

 ItemValueDecimal = QuantityInteger * PriceDecimal

HoursWorkedSingle = MinutesWorkedSingle / 60F

NetProfitDecimal = GrossSalesDecimal – CostGoodsSoldDecimal

The plus symbol combined with the equal sign allows you to accumulate a value in a memory

variable. Examples:

Visual Programming IS202

13
 م.م. أنس القصاب د. حيدر محمد المشهدي

 TotalSalesDecimal += SaleAmountDecimal

 is equivalent to the following – it means take the current value of TotalSalesDecimal and add to it the value

of SaleAmountDecimal and store it back to TotalSalesDecimal (it gets bigger and BIGGER).

 TotalSalesDecimal = TotalSalesDecimal + SaleAmountDecimal

 The minus symbol combined with the equal sign allows you to decrement or count backwards. Examples:

CountInteger -= 1

 is equivalent to

 CountInteger = CountInteger - 1

Option Explicit and Option Strict

These options change the behavior of your coding editor and the program compiler.

 Option Explicit option is ON by default in VB.NET.

o This option requires you to declare all variables and constants.

o If set to Off, you do not need to declare any variables.

o Sometimes programmers will turn this option off with the command shown here, but it is a bad

practice because it can cause you to spend many hours trying to find errors in variable names

that Option Explicit On will find for you.

Option Explicit Off

 Option Strict option is OFF by default in VB.

o This option causes the editor and compiler to try to help you from making mistakes by requiring

you to convert from wider data types to narrower ones (ones using less memory).

o Helps avoid the mistake of mixing data types within an expression, for example: trying to add a

string value to an integer value.

o With Option Strict Off, you can write the following assignment statement to store a value from

a textbox to a memory variable – VB will automatically convert the string data in the textbox to

integer data for storage in the variable:

 QuantityInteger = QuantityTextBox.Text

 With Option Strict On, you must write the following – VB will not automatically convert the

data from string to integer – you must parse the data.:

 QuantityInteger = Integer.Parse(QuantityTextBox.Text)

Use of Option Strict On is a good practice, but is not always followed in industry.

 We will almost always use Option Strict On in our programs.

Visual Programming IS202

14
 م.م. أنس القصاب د. حيدر محمد المشهدي

 Place the command in your program after the general comments at the top of the program as the first

line of code as shown here.

 'Project: Ch03VBUniversity

'D. Bock

'Today's Date

 Option Strict On

 Public Class Books

Rounding Numbers

Use the Decimal.Round method to round decimal values to a desired number of positions to the right of the

decimal. Always specify the number of digits to round – the default is to round to the nearest whole

number. Always round when multiplying and dividing or when using exponentiation as these operations can

result in rounding errors. Simple subtraction and addition do not require rounding. Examples:

SalesTaxDecimal = Decimal.Round(SALES_TAX_RATE_DECIMAL * AmountSoldDecimal, 2)

SalesTaxDecimal = Decimal.Round(Convert.ToDecimal(SubtotalDecimal *

SALES_TAX_RATE_SINGLE), 2)

Formatting Data for Output

Data to be formatted for output will often use the ToString method you learned earlier. Additional examples

are shown here for your reference in completing programming assignments:

 Example #1: This shows formatting a decimal value to string for display in a textbox control – the output is

formatted as currency (dollar sign, commas, 2 decimal points – the default is to format numeric output with

2 digits to the right of the decimal point).

 SalesTaxTextBox.Text = SalesTaxDecimal.ToString("C")

 Example #2: This shows formatting as currency, but with no digits to the right of the decimal point.

 TotalDueTextBox.Text = TotalDueDecimal.ToString("C0")

 Example #3: This formats the output as a number with two digits to the right of the decimal and with one or

more commas as appropriate – sometimes you will not want to display a currency symbol.

TotalDueTextBox.Text = TotalDueDecimal.ToString("N0")

 Formatting codes are:

 C or c – currency.

 F or f – fixed-point, to format a string of digits, no commas, and minus sign if needed.

Visual Programming IS202

15
 م.م. أنس القصاب د. حيدر محمد المشهدي

 N or n – formats a number with commas, 2 decimal place values, and minus sign if

needed.

 D or d – formats integer data types as digits to force a specific number of digits to display.

 P or p – formats percent value rounded to 2 decimal place values.

 Add a digit such as 0 to format with that number of decimal place values,

e.g., C0 or N0 produces no digits to the right of the decimal whereas C4 or N4 would

produce 4 digits to the right of the decimal point.

Older versions of VB used functions to format output – these are still widely used and are provided

here for your reference if you find them in other textbooks.

FormatCurrency Function – This function displays output formatted as dollars and cents. The default is a

dollar sign, appropriate commas, and two digits to the right of the decimal. This formats a value stored in

memory named BalanceDueDecimal and displays it to the TextBox control

named BalanceDueTextBox. Remember, TextBox controls store string values. Example:

BalanceDueTextBox.Text = FormatCurrency(BalanceDueDecimal)

FormatNumber Function – This function displays output formatted as numbers with commas and two digits

to the right of the decimal. Example:

 AmountTextBox.Text = FormatNumber(AmountDouble)

AmountTextBox.Text = FormatNumber(AmountDouble,3)

FormatPercent Function – This function displays output formatted as a percent – it multiples the argument

by 100, adds a percent sign, and rounds to two decimal places. Example:

 PercentFinishedTextBox.Text = FormatPercent(FinishedSingle)

 FormatDate Function – This function formats an expression as a date and/or time. Examples:

'Displays the value as MM/DD/YY

'Example: 2/28/07

DateTextBox.Text = FormatDateTime(StartDate, DateFormat.ShortDate)

'Displays the value as Date of week, month, day, year

'Example: Monday, August 5, 2007

DateTextBox.Text = FormatDateTime(StartDate, DateFormat.LongDate)

'Displays the value as HH:MM (24 hour clock)

'Example: 21:15

TimeTextBox.Text = FormatDateTime(StartDateTime,

DateFormat.ShortTime)

'Displays the value as HH:MM:SS AM/PM(24 hour clock)

Visual Programming IS202

16
 م.م. أنس القصاب د. حيدر محمد المشهدي

'Example: 6:10:24 PM

TimeTextBox.Text = FormatDateTime(StartDateTime,

DateFormat.LongTime)

In-Class Exercise – Computing Book Sales Information

Build the Form

Develop a project with a Form like that shown below.

 None of the labels used as prompts need to be named.

 The first four TextBox controls are used for data entry – use these
names: BookTitleTextBox, ISBNTextBox, PriceTextBox and QuantityTextBox.

 The next three TextBox controls are used to display output. Set these properties:

 ReadOnly property = True,

 Name properties = SubtotalTextBox, SalesTaxTextBox, and TotalDueTextBox.

 Name the buttons ComputeButton, ResetButton, TotalsButton, and ExitButton.

Compute Button Click Event

The Click event sub procedure should compute the values to be displayed as output and display those

values. Use the Input-Process-Output model.

 Input: Start by entering remarks to play the logic of the procedure. Here is an example:

 Private Sub ComputeButton_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles ComputeButton.Click

Visual Programming IS202

17
 م.م. أنس القصاب د. حيدر محمد المشهدي

 'Input

 'Declare constants

 '7.25 percent sales tax rate

 'Declare variables and convert values from

 'textbox controls to memory

 'Process - Compute values

 'Subtotal = price times the quantity of books

 'Sales tax = sales tax rate times the subtotal minus discount

amount

 'Total due is the subtotal minus discount amount plus sales tax

 'Output - display output formatted as currency

 End Sub

 Do NOT try to start by coding the variables needed. Instead, each time you use a variable in an assignment

statement, you then declare the variable as necessary.

 Begin by converting the PriceTextBox control's Text property value to a decimal value in memory.

 An appropriate variable name is PriceDecimal for the memory variable.

 This causes you to need to also declare the variable. Your code now looks like this.

 'Declare variables

 Dim PriceDecimal As Decimal

 'Convert values from TextBox controls to memory

 PriceDecimal

= Decimal.Parse(PriceTextBox.Text, Globalization.NumberStyles.Currency)

 You can also combine the above two statements into a single statement if you desire.

 'Declare variables and convert value from textbox to memory

Visual Programming IS202

18
 م.م. أنس القصاب د. حيدر محمد المشهدي

 Dim PriceDecimal As Decimal = Decimal.Parse(PriceTextBox.Text, Global

ization.NumberStyles.Currency)

 Now write an assignment statement to convert the Quantity TextBox control's Text property to an integer

value in memory. You will need another variable. Your code now looks like this:

 'Declare variables

 Dim PriceDecimal As Decimal

 Dim QuantityInteger As Integer

 'Convert values from TextBox controls to memory

 'Gives an example of using both the Convert and Parse methods.

 PriceDecimal

= Decimal.Parse(PriceTextBox.Text, Globalization.NumberStyles.Currency)

 QuantityInteger

= Integer.Parse(QuantityTextBox.Text, Globalization.NumberStyles.Number)

Alternatively, you can combine the above four statements into two statements.

 'Declare variables and convert value from textbox to memory

 Dim PriceDecimal As Decimal = Decimal.Parse(PriceTextBox.Text, Global

ization.NumberStyles.Currency)

 Dim QuantityInteger As Integer = Integer.Parse(QuantityTextBox.Text,

Globalization.NumberStyles.Number)

Process: You will need variables to store intermediate values that will eventually be displayed to the output

TextBox controls. Examine the form. You'll see that the values are all currency so you'll use the decimal

data type.

 Write the assignment statement to compute the subtotal (price multiplied by quantity).

 You might use the variable name SubtotalDecimal to store the subtotal value in memory.

 Also update the Dim statement listing that declares decimal variables.

 'Subtotal = price times the quantity of books

 SubtotalDecimal = PriceDecimal * QuantityInteger

Visual Programming IS202

19
 م.م. أنس القصاب د. حيدر محمد المشهدي

… Go to the top of sub procedure and declare the SubtotalDecimal variable

 Dim SubtotalDecimal As Decimal

Computing the Sales Tax: Sales tax is charged on the subtotal at the rate of 7.25%. This requires the

following actions:

 Declare a constant of data type single named SALES_TAX_RATE_SINGLE with the value 7.25%.

 Write an assignment statement that will compute the sales tax due and assign the value to a
memory variable named SalesTaxDecimal.

 Update the Dim statement to add SalesTaxDecimal to the declaration list.

 Use the Decimal.Round and Convert.ToDecimal methods to treat the expression as a decimal value
and to round to the nearest penny.

 'Sales tax = sales tax rate times the subtotal minus discount amount

 SalesTaxDecimal = Decimal.Round(Convert.ToDecimal(SubtotalDecimal *

SALES_TAX_RATE_SINGLE), 2)

… Go to the top of sub procedure and declare the SALES_TAX_RATE_SINGLE constant and

the SalesTaxDecimal variable (you can add the variable to the existing Dim statement for Decimal variables).

 Const SALES_TAX_RATE_SINGLE As Single = 0.0725 '7.25 percent rate

 Dim SubtotalDecimal, SalesTaxDecimal As Decimal

Computing the Total Due: The total due is the formula: subtotal + sales tax. The total due value is stored to

a memory variable named TotalDueDecimal. Add this variable to the Dim statement earlier in the sub

procedure.

 'Total due = the subtotal minus discount amount plus sales tax

 TotalDueDecimal = SubtotalDecimal + SalesTaxDecimal

… Go to the top of sub procedure and declare the TotalDueDecimal variable (you can add it to the existing

Dim statement).

 Dim SubtotalDecimal, SalesTaxDecimal, TotalDueDecimal As Decimal

Output: Store the values from the memory variables to the Text property of the output TextBox controls.

 This code is straight-forward assignment statements, but requires formatting the output (if desired)
to appear in currency format.

 No new variables are needed.

Visual Programming IS202

20
 م.م. أنس القصاب د. حيدر محمد المشهدي

 The default number of digits to the right of the decimal is 2 so you do not need to specify C2 or N2.

 'Display output formatted as currency

 SubtotalTextBox.Text = SubtotalDecimal.ToString("C")

 SalesTaxTextBox.Text = SalesTaxDecimal.ToString("N")

 TotalDueTextBox.Text = TotalDueDecimal.ToString("C")

Test the program.

 As long as you make no data entry errors, it should produce correct output.

 If the data entered for either price or quantity is not numeric, an exception is thrown.

Handling Exceptions – Data Entry Errors

Sometimes application users will make typing errors – typing letters where they mean to type numbers.

The Parse method returns an exception (also called an error) if the data entered in a TextBox cannot be

converted to an appropriate numeric value, or if the TextBox is blank, or if the value contains special

characters such as a percent symbol – %. In this situation, it is necessary to display an error message to the

application user.

MessageBox.Show – The MessageBox.Show statement displays messages in the middle of the screen. You

can use this to display exception messages.

 The example MessageBox.Show statement shown below produces a "plain looking" message box like the

one shown in the figure below.

 MessageBox.Show("Error in either Book Price or Quantity Purchased")

Visual Programming IS202

21
 م.م. أنس القصاب د. حيدر محمد المشهدي

 You need to specify the use of specific text in the message box title bar. You can add a graphic icon and

button(s) to the message box. For now use the OK button; you will learn other buttons in a later module.

MessageBox.Show Parameters – a MessageBox.Show method always requires a message, but has numerous

optional parameters that may be included. We will use a total of four parameters—these are:

 The message – a string value or string variable.

 The title bar entry for the message box – a string value or string variable.

 The button enumeration – choose button(s) from the Intellisense popup.

 The icon enumeration – choose an icon from the Intellisense popup.

Each parameter is separated by a comma. The parameters are shown in this general format:

 MessageBox.Show("Exception message here", "Title bar name

here", button enumeration here, icon enumeration here).

 As you type a comma between each parameter of the MessageBox.Show method, Intellisense will popup

help to guide you in entering the title bar text value and in selecting an icon and button(s):

MessageBox.Show("Error in either Book Price or Quantity

Purchased", "Data Entry Error", MessageBoxButtons.OK,

MessageBoxIcon.Error)

Try/Catch Blocks – The Try-Catch block is a coding technique used to catch exceptions – this is

called Exception Handling. The general format is as follows:

Try

 'Place all of the code that you want to execute for the sub procedure

here.

 'You can have lots of statements here.

Catch [Optional VariableName As ExceptionType]

 'Place statements for action to take when

 'an exception occurs.

 'You can also have lots of statements here.

[Finally] 'This part is optional

 'Place statements to always execute before the end

Visual Programming IS202

22
 م.م. أنس القصاب د. حيدر محمد المشهدي

 'of the Try block.

 'You can also have lots of statements here.

End Try

Example:

Try

 QuantityInteger

= Integer.Parse(QuantityTextBox.Text, Globalization.NumberStyles.Number)

 PriceDecimal

= Decimal.Parse(PriceTextBox.Text, Globalization.NumberStyles.Currency)

 . . . other code goes here to complete the processing

Catch ex As Exception

 MessageBox.Show("Error in either Book Price or Quantity

Purchased", "Data Entry Error", MessageBoxButtons.OK,

MessageBoxIcon.Error)

End Try

In-Class Exercise

Modify the ComputeButton click event sub procedure to handle exceptions.

 Add a Try-Catch block to catch errors if the application user enters invalid numeric data.

 Use a MessageBox statement to display the appropriate message.

 Note the indentation used to aid in the readability of the code is automatically added by VB.

Go to the first line within the ComputeButton sub procedure. Begin by typing the word Try and pressing

the Enter key. VB will add the following coding outline automatically.

 Private Sub ComputeButton_Click(ByVal sender As System.Object, ByVal

 e As System.EventArgs) Handles ComputeButton.Click

 Try

 Catch ex As Exception

 End Try

 Now highlight and drag/drop (or cut/paste) all of the code within the sub procedure that you wrote earlier

and paste this inside the Try portion of the Try-Catch block. Your code now looks like this:

 Private Sub ComputeButton_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles ComputeButton.Click

 Try

 'Declare constants

Visual Programming IS202

23
 م.م. أنس القصاب د. حيدر محمد المشهدي

 '7.25 percent sales tax rate

 Const SALES_TAX_RATE_SINGLE As Single = 0.0725

 'Declare variables

 Dim SubtotalDecimal, SalesTaxDecimal,

TotalDueDecimal As Decimal

 'Declare variables and convert values from

 'textbox controls to memory

 Dim PriceDecimal As Decimal = Decimal.Parse(PriceTextBox.Text

, Globalization.NumberStyles.Currency)

 Dim QuantityInteger As Integer = Integer.Parse(QuantityTextBo

x.Text, Globalization.NumberStyles.Number)

 'Process - Compute values

 'Subtotal = price times the quantity of books

 SubtotalDecimal = PriceDecimal * QuantityInteger

 'Sales tax = sales tax rate times the subtotal

 SalesTaxDecimal

= Decimal.Round(Convert.ToDecimal(SubtotalDecimal *

SALES_TAX_RATE_SINGLE), 2)

 'Total due = subtotal plus sales tax

 TotalDueDecimal = SubtotalDecimal + SalesTaxDecimal

 'Display output formatted as currency

 SubtotalTextBox.Text = SubtotalDecimal.ToString("C")

 SalesTaxTextBox.Text = SalesTaxDecimal.ToString("N")

 TotalDueTextBox.Text = TotalDueDecimal.ToString("C")

 Catch ex As Exception

Visual Programming IS202

24
 م.م. أنس القصاب د. حيدر محمد المشهدي

 MessageBox.Show("Error in either Book Price or Quantity

Purchased", "Data Entry Error", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 PriceTextBox.Focus()

 End Try

 End Sub

Notice that all of the code that you want to execute will ALWAYS go inside the Try portion of the Try-

Catch block.

 Note the addition of code above inside the Catch portion of the Try-Catch block to display the exception

message.

 Note that the focus is set to the PriceTextBox control, although the error may be in the quantity
purchased.

 In the next chapter you will learn how to determine which TextBox has the invalid data.

Enabling and Disabling Controls

Controls such as buttons can be enabled and disabled (grayed out) through the Enabled property.

 A typical approach is to have the Reset button disabled on startup of the system. When

the Compute button is clicked and the calculations are displayed, the Resetcommand button is enabled at

that time.

 Example (assume the ResetButton control is disabled at design time).

 'Enable/disable buttons

 ComputeButton.Enabled = False

 ResetButton.Enabled = True

In-Class Exercise

Modify the program and sub procedure by setting button properties.

 At the design level, set the Enabled property to False for the Reset button on the form.

 In the sub procedure for the Click event of the Compute button, set the Reset button to be enabled, and
the Compute button to be disabled as shown above. This should be coded at the end of the Try coding
block, but just before the Catch statement.

 'Other tasks to code

Visual Programming IS202

25
 م.م. أنس القصاب د. حيدر محمد المشهدي

 'Enable/disable buttons

 ComputeButton.Enabled = False

 ResetButton.Enabled = True

Catch ex As Exception

Reset Button Click Event

The Reset button should clear the textboxes, disable the Reset button, enable the Compute button, and set

the focus back to the first TextBox.

 Begin by typing remarks into the sub procedure like this.

Private Sub ResetButton_Click(ByVal sender As System.Object, ByVal e As S

ystem.EventArgs) Handles ResetButton.Click

 'Clear all TextBox controls

 'Enable/disable buttons

 'Set focus to the BookTitleTextBox

 End Sub

 Now write the code to perform the required tasks. You should have mastered this from your previous
exercises. Using the With-End With statement reduces the amount of typing required.

 Private Sub ResetButton_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles ResetButton.Click

 'Clear the text box controls

 BookTitleTextBox.Clear()

 ISBNTextBox.Clear()

 PriceTextBox.Clear()

 QuantityTextBox.Clear()

 SubtotalTextBox.Clear()

 SalesTaxTextBox.Clear()

 TotalDueTextBox.Clear()

Visual Programming IS202

26
 م.م. أنس القصاب د. حيدر محمد المشهدي

 'Enable/disable buttons

 ComputeButton.Enabled = True

 ResetButton.Enabled = False

 'Set the focus to the book title text box control

 BookTitleTextBox.Focus()

 End Sub

Exit Button Click Event

The Exit command button should terminate the program. Use the Me.Close() statement.

 Private Sub CxitButton_Click(ByVal sender As System.Object, ByVal e A

s System.EventArgs) Handles ExitButton.Click

 'Close the form

 Me.Close()

 End Sub

Sums, Counts, and Averages

Sums – programs often need to sum up numbers. For example, a cash register program that sums up the

amount due for a sale at a grocery store. In this case we are computing a total by adding the cost of an

item purchased to the total amount for every item (total of the sale).

Example: TotalAmountDecimal += ItemCostDecimal

Counts – sometimes there is a need to count how many times something happens. There are two

approaches that can be taken:

 If there is a TextBox that stores the quantity of an item, for example, the quantity sold to a customer,
then you use the Sum technique given above.

Example: TotalQuantityInteger += QuantitySoldInteger

 If there is no TextBox, then your code will need to count by one each time, adding one to a memory
variable.

Visual Programming IS202

27
 م.م. أنس القصاب د. حيدر محمد المشهدي

Example: TotalQuantityInteger += 1

 Averages are computed by dividing a total by a count.

Example: AverageAmountValueDecimal = TotalAmountDecimal / TotalQuantityInteger

Suppose that we need to display the total quantity of books sold along with the total dollar value of sales and

the average value of each book sold, then display these values with in a MessageBox. This next section

explains how to proceed.

Summing the Total Sales and Counting the Number of Books Sold

Because the total sales and count of books sold must be saved after every execution of the Compute button's

click event sub procedure, you need to declare two module-level variables to store these values. The scope

needs to be at the module-level for these values in order to retain their value as long as the program is

executing.

 Add module-level declarations for two variables as shown.

 'Project: Ch03VBUniversity

'D. Bock

'Today's Date

Option Strict On

Public Class Books

 'Declare module-level variables and constants

 Private TotalQuantityInteger As Integer

 Private TotalSalesDecimal As Decimal

Each time the application user clicks the Compute Button your program must accumulate

the TotalQuantityInteger and TotalSalesDecimal values with the assignment statements shown here. These

statements can be added to the code for the Compute Button after the code that enables/disables buttons.

 'Accumulate total sales and total books sold.

 TotalQuantityInteger += QuantityInteger

 TotalSalesDecimal += TotalDueDecimal

Visual Programming IS202

28
 م.م. أنس القصاب د. حيدر محمد المشهدي

Calculating an Average

Calculating an average by dividing a sum of some value by the count of the number of times a value occurred.

 The formula to calculate the average book sold value is:

AverageSaleDecimal = TotalSalesDecimal / TotalQuantityInteger

The Exception Class – Multiple Catch Blocks

An exception thrown by a program is a member of the Exception class of objects.

 Exceptions have properties used to determine the object causing the error (Source property), location of the

exception in your code (Stack-Trace property), type of exception, and cause (Message property).

 You can have multiple Catch blocks in a Try-Catch coding block to handle different exceptions; but only ONE

Catch block will execute—the first one with a matching exception.

 This table lists just a few of the exceptions you can trap.

 Table 3.6

Exception Description

FormatException Failure of data conversion for numeric data through use of Integer.Parse, or

some similar conversion.

InvalidCastException Failure to conversion operation caused by loss of significant digits or some

other illegal conversion.

ArithmeticException Calculation error such as divide by zero.

OutOfMemoryException Not enough memory to create an object.

Exception The generic "catch all" exception.

 Exceptions have a hierarchy from specific to general.

 The hierarchy is covered in the MSDN help.

 Code the Catch blocks from specific to general; otherwise, the Exception (generic) will catch all
errors and none of the other Catch blocks will ever execute.

 Example coding of multiple exceptions:

 Catch exArithmeticException As ArithmeticException

Visual Programming IS202

29
 م.م. أنس القصاب د. حيدر محمد المشهدي

 MessageBox.Show("No books have been sold yet", "Zero Sales Message",

MessageBoxButtons.OK, MessageBoxIcon.Information)

Catch ex As Exception

 MessageBox.Show("Unexpected Error-inform the system

administrator", "Unknown Error in Totals Button", MessageBoxButtons.OK,

MessageBoxIcon.Error)

End Try

 Totals Button Click Event

Code the Totals Button click event as shown here.

 Calculates the average sale by dividing the total sales by the total quantity of books sold.

 Produces 3 lines of output.

 Formats all output values displayed.

 Catches error of not having sold a book.

 Catches generic errors in case an unforeseen error occurs.

 Private Sub TotalsButton_Click(ByVal sender As System.Object, ByVal e

 As System.EventArgs) Handles TotalsButton.Click

 Try

 'Display the total sales, total books sold,

 'and average book value in a message box.

 Dim AverageSaleDecimal As Decimal = TotalSalesDecimal /

TotalQuantityInteger

 Dim MessageString As String = "Total Sales: " &

TotalSalesDecimal.ToString("C") & ControlChars.NewLine & "Total Books

Sold: " & TotalQuantityInteger.ToString("N0") & ControlChars.NewLine

& "Average Book Value: " & AverageSaleDecimal.ToString("C")

 MessageBox.Show(MessageString, "Totals and Averages",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 Catch exArithmeticException As ArithmeticException

 MessageBox.Show("No books have been sold yet", "Zero Sales

Message", MessageBoxButtons.OK, MessageBoxIcon.Information)

 Catch ex As Exception

 MessageBox.Show("Unexpected Error-inform the system

administrator", "Unknown Error in Totals Button", MessageBoxButtons.OK,

MessageBoxIcon.Error)

Visual Programming IS202

30
 م.م. أنس القصاب د. حيدر محمد المشهدي

 End Try

 End Sub

 Test the project.

 Run the project and click the Totals button – the message box should display the No books have
been sold yet message.

 Now enter a couple of book sales – click Totals again and the message box should display the total
sales in dollars, total books sold, and average book sale value.

 Now you have learned the concepts and techniques needed to complete your next programming

assignment. Happy Computing!

Solution to In-Class Exercise

'Project: Ch03VBUniversity

'D. Bock

'Today's Date

Option Strict On

Public Class Books

 'Declare module-level variables and constants

 Private TotalQuantityInteger As Integer

 Private TotalSalesDecimal As Decimal

 Private Sub ComputeButton_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles ComputeButton.Click

 Try

 'Declare constants

 '7.25 percent sales tax rate

 Const SALES_TAX_RATE_SINGLE As Single = 0.0725

 'Declare variables

 Dim SubtotalDecimal, SalesTaxDecimal,

TotalDueDecimal As Decimal

 'Declare variables and convert values from

 'textbox controls to memory

Visual Programming IS202

31
 م.م. أنس القصاب د. حيدر محمد المشهدي

 Dim PriceDecimal As Decimal = Decimal.Parse(PriceTextBox.Text

, Globalization.NumberStyles.Currency)

 Dim QuantityInteger As Integer = Integer.Parse(QuantityTextBo

x.Text, Globalization.NumberStyles.Number)

 'Process - Compute values

 'Subtotal = price times the quantity of books

 SubtotalDecimal = PriceDecimal * QuantityInteger

 'Sales tax = sales tax rate times the subtotal

 SalesTaxDecimal

= Decimal.Round(Convert.ToDecimal(SubtotalDecimal *

SALES_TAX_RATE_SINGLE), 2)

 'Total due = subtotal plus sales tax

 TotalDueDecimal = SubtotalDecimal + SalesTaxDecimal

 'Display output formatted as currency

 SubtotalTextBox.Text = SubtotalDecimal.ToString("C")

 SalesTaxTextBox.Text = SalesTaxDecimal.ToString("N")

 TotalDueTextBox.Text = TotalDueDecimal.ToString("C")

 'Other tasks to code

 'Enable/disable buttons

 ComputeButton.Enabled = False

 ResetButton.Enabled = True

 'Accumulate total sales and total books sold.

 TotalQuantityInteger += QuantityInteger

 TotalSalesDecimal += TotalDueDecimal

 Catch ex As Exception

Visual Programming IS202

32
 م.م. أنس القصاب د. حيدر محمد المشهدي

 MessageBox.Show("Error in either Book Price or Quantity

Purchased", "Data Entry Error", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 PriceTextBox.Focus()

 End Try

 End Sub

 Private Sub ResetButton_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles ResetButton.Click

 'Clear the text box controls

 BookTitleTextBox.Clear()

 ISBNTextBox.Clear()

 PriceTextBox.Clear()

 QuantityTextBox.Clear()

 SubtotalTextBox.Clear()

 SalesTaxTextBox.Clear()

 TotalDueTextBox.Clear()

 'Enable/disable buttons

 ComputeButton.Enabled = True

 ResetButton.Enabled = False

 'Set the focus to the book title text box control

 BookTitleTextBox.Focus()

 End Sub

 Private Sub ExitButton_Click(ByVal sender As System.Object, ByVal e A

s System.EventArgs) Handles ExitButton.Click

 'Close the form

 Me.Close()

 End Sub

Visual Programming IS202

33
 م.م. أنس القصاب د. حيدر محمد المشهدي

 Private Sub TotalsButton_Click(ByVal sender As System.Object, ByVal e

 As System.EventArgs) Handles TotalsButton.Click

 Try

 'Display the total sales, total books sold,

 'and average book value in a message box.

 Dim AverageSaleDecimal As Decimal = TotalSalesDecimal /

TotalQuantityInteger

 Dim MessageString As String = "Total Sales: " &

TotalSalesDecimal.ToString("C") & ControlChars.NewLine & "Total Books

Sold: " & TotalQuantityInteger.ToString("N0") & ControlChars.NewLine

& "Average Book Value: " & AverageSaleDecimal.ToString("C")

 MessageBox.Show(MessageString, "Totals and Averages",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 Catch exArithmeticException As ArithmeticException

 MessageBox.Show("No books have been sold yet", "Zero Sales

Message", MessageBoxButtons.OK, MessageBoxIcon.Information)

 Catch ex As Exception

 MessageBox.Show("Unexpected Error-inform the system

administrator", "Unknown Error in Totals Button", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 End Try

 End Sub

 End Class

End Class

